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Abstract 

A complementary relationship between the entropy (S) 
and the variance (a 2) of an electron-density map is de- 
rived by approximating the logarithmic term in the en- 
tropy expression by a series expansion around the average 
map density. The resulting expression is S _'-~ In N - ~at 2, 
where N is the number of grid points and a is the r.m.s. 
deviation from the mean in a map normalized to unit mean. 
The algebraic expression is of interest because it is consis- 
tent with and allows numerical evaluation of the surpris- 
ing argument that noise decreases the entropy of a map. 
The argument is that a noise contribution by itself gener- 
ates a certain variance that is independent of the atomic 
structure and that adds to the variance due to the structure. 
Increased variance corresponds to decreased entropy. This 
property of noise provides an intuitively reasonable justi- 
fication for maximizing the entropy of an electron-density 
map in the quest for more readily interpretable maps of 
macromolecules. The entropy-variance relationship also 
extends the range of applicability of the entropy concept 
to maps with a limited amount of negative density. The 
approximation which leads to the entropy-variance rela- 
tionship is most applicable where it is most likely to be 
useful - in experimental maps of relatively low structure 
definition. 

Introduction 

The maximum-entropy approach to the phase problem re- 
lies on the notion that the optimum representation of the 
information in the data corresponds to a probability dis- 
tribution with maximum entropy (Jaynes, 1978). In crys- 
tallography, this probability distribution is a normalized 
electron-density map which is consistent with a set of con- 
straints (the experimental data) and does not contain un- 
warranted detail. Such a distribution is the flattest possible 
under the constraints (Collins & Prince, 1991). But why is 
the flattest map desirable, especially when one considers 
ideal atoms as points? 

An initial answer is that in practical macromolecular 
problems atoms are far from being points, especially in 
the initial phasing stages. In fact, the main expression of 
phasing inadequacies in macromolecular maps is ambigu- 
ities in chain tracing - problems in working out the con- 
nectivity of atoms. At less than atomic resolution, spikes 
misrepresent the true density. These make map interpre- 

tation more, rather than less, difficult. A flat map is more 
helpful than a spiky map in establishing connectivity. 

A second answer is the argument that, again at practi- 
cal resolution, noisy maps are less fiat than their noiseless 
counterparts. The qualitative and quantitative presentation 
of this second point and some numerical tests of its appli- 
cability at practical resolution are the focus of this paper. 
(The quantitative assessment of connectivity is a much 
more difficult problem that will be addressed separately.) 

Noise decreases entropy 

Noise, it can be argued, increases the variance and de- 
creases the entropy of an electron-density map, as com- 
pared to the same map without noise. 

Consider a 'noiseless pseudo-density' map for a pro- 
tein molecule. Such a map, on a grid at limited reso- 
lution, with no negative density, can be synthesized by 
summing Gaussian atomic density peaks with widths ob- 
tained from resolution, temperature factors and scattering 
factors. From this map, 'noiseless' structure factors may 
be obtained by an inverse Fourier transform. 

Adding noise to the F ' s  will increase the variance of 
the resulting map. The difference between the noisy and 
noiseless maps is the same as a map calculated from the 
noise terms alone, because of the linearity of the Fourier 
transform. The noise-only map has a certain variance, 
as has the noiseless map. If the noise is assumed to be 
uncorrelated with the F ' s ,  the variance of the combined 
map (the noisy F ' s  map) is the sum of the variances of 
the component maps and is greater than that of either map 
alone. The variance of the noiseless map results from the 
protein structure, and is the minimum possible variance, 
given that structural constraint. 

The relation between the variance of a map and its 
entropy is a complementary one: a larger variance corre- 
sponds to a reduced entropy. In the limit of small variance, 
the quantitative relationship between entropy and variance 
is 

in N -  0.5~-']N1 (d i - -d)  2 S =  
N32 ' 

where N is the number of grid _points in the map, di is 
the density value at a point and d is the average density 
value. This relationship is derived from a series expansion 
of the logarithm, but is numerically good to about 10% 
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Table 1. Numerical comparison of entropy and variance 

Resolution A S  + ½tr 2 S + N % Map identity > 

CPG MIR 2.0 0.0924 0.0892 12.2051 220320 99.4 
No F00o 0.3449 0.3606 11.2317 48.4 
( - d )  n/a 0.5933 11.7095 99.4 

3EST 3.0 0.2217 0.2383 12.1666 277200 84.6 
No F00o 0.4454 0.5125 11.3366 47.2 
( - d )  n/a 0.5000 12.0325 84.6 

XSU 3.0 0.4016 0.3336 11.0731 96255 100.0 
No F000 0.2214 0.2022 10.5244 48.2 

IBP2 Fc 1.7 0.7395 1.0273 11.2004 230400 66.4 
rned 0.3748 2.6995 11.9270 100.0 
Fo med 0.4590 0.8788 11.5287 69.6 
sins 1 0.0752 0.1275 12.2719 100.0 
Fosmsl 0.6704 1.0031 11.2705 66.5 
sins2 0.3470 0.7697 11.9998 100.0 
Fo sms2 0.6769 1.0183 11.2662 66.7 

Bi-level n/a 0.6931 0.5000 n/a n/a 100.0 
0.6617 0.4900 
1.3863 1.5000 
1.3339 1.4700 
0.5548 0.6734 
2.0794 3.5000 
0.9165 1.5712 

0 % optiony 
90.7 
34.3 
55.3 

69.4 
30.2 
60.7 

66.9 
38.7 

31.8 
65.7 
44.1 
92.7 
34.1 
70.4 
33.9 

dmax/d 
4.02 
3.02 
4.02 

7.26 
6.26 
7.26 

3.07 
2.07 

28.3 
312.6 
143.2 
28.3 
59.2 
28.3 
38.5 

dmin/d 
-0.48 
- 1.48 
-0.48 

-1.55 
-2.55 
-1.55 

0.00 
-1.00 

-3.96 
0.27 

-12.23 
0.51 

-5.24 
0.23 

-4.53 

50.0 2.00 0.00 
51.6 1.99 0.01 
25.0 4.00 0.00 
26.3 3.97 0.01 
57.4 3.01 0.33 
12.5 8.00 0.00 
40.0 5.67 0.33 

Notes: A S  + = l n ( N  + ) - S + is the logarithm of the number of points > 0 minus the entropy over the same set of points. N + is 

of points with density > 0. d is the average density when F000 is included. 'n /a '  stands for 'not applicable'. 
the number 

for experimental electron-density maps. Taking this as an 
alternative approximate entropy has an advantage over 
the logarithmic definition because it can be applied to 
maps with a limited amount of negative density (although 
the mean d cannot approach zero). A key point in the 
derivation is to expand the logarithm around the average 
density (see Appendix). 

In the region where our approximation is good, the sum 
of the entropy and one-half of the always-positive variance 
of the map is In N,  the maximum possible entropy for N 
points. Any increase of the variance due to noise must 
necessarily decrease the entropy, and this is a justification 
for using entropy as a figure of merit for choosing among 
phase sets. The approximation seems good enough for 
'real' maps to serve as a heuristic characterization of 
what the entropy measure is telling us. The comparison 
of entropies in this approximation reduces to comparing 
suitably normalized variances. 

Numerical  examples 

Numerical tests of the entropy-variance relationship were 
applied to maps with different degrees of refinement, with 
different resolutions and with different amounts of nega- 
tive density. The relationship holds best for 'real' electron- 
density maps (low to moderate atom definition) and is 
worst for maps which have been made exponentially pos- 
itive. The relationship has been examined quantitatively 
in these cases: 

(1) CPG - a 2.0 A smoothed multiple isomorphous re- 
placement (MIR) map of carboxypeptidase A'y (R. Swan- 
son, unpublished); 

(2) 3EST - a 3.0 A 2Fo - Fc map from refined native 
elastase (Meyer, Cole, Radhakrishnan & Epp, 1988); 

(3) XSU - a corresponding 3.0 A 'noiseless pseudo- 
density' map also based on elastase coordinates; 

(4) 1BP2 - a 1.7/~ Fc map of phospholipase A2 (Dijk- 
stra, Kalk, Hol & Drenth, 1981), and various 'positivized' 
maps created from it; 

(5) Bi-level - a set of simplified maps (only two density 
levels) for illustration and comparison of the effects of 
certain density changes. 

The results are shown in Table 1 in the form of the dif- 
ference between the maximum entropy and the observed 
entropy (both based on positive-density points - column 
AS+) ,  compared with an estimate of the same quantity 
based on variance (colunm 1 2 7ty ). The observed entropy 
(column S +) and the total number of points in each map 
(column N)  are given for reference. The percentage of 
non-negative density points (column % > 0) and the per- 
centage of points in a tmiform density that would yield an 
entropy equal to the observed entropy (column % optiony) 
are shown to facilitate comparison between the examples. 
The quantity 'optiony', on which '% optiony' is based, 
is the exponential of an entropy value (Swanson, 1990). 
Percent optiony corresponds to the non-zero volume of 
the cell in a 1-0 bi-level density with the same entrop_y 
as the actual map. The last two columns (dmax/-d, dmin/O0 
in the table show the maximum and minimum densities 
(scaled by the average density ~ as indicators of the non- 
uniformity of the density. 

Although the inclusion of F000 is important to entropy 
calculations, F000 is often not readily available in the 
earlier stages of protein map calculations. To explore the 
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consequences of omitting the F000 term, the table shows 
values for CPG, 3EST and XSU maps with and without 
F000 included. The entropy values and variances for the 
first two lines for each of the maps mentioned are based 
only on points with density greater than zero. The third 
line for each ( -d )  is based on all points, including negative 
densities. The entropy quoted on the third line of each 
set is estimated from the variance only since entropy 
cannot be calculated directly when negative numbers are 
included. The variance approximation to the entropy is 
little affected by the omission of F000, even though the 
overall entropy, as calculated by omitting negative density 
points, is significantly (and unrealistically) reduced. 

A rule of thumb for the contribution of F000 to the 
average value of a map can be proposed from experience 
with MIR maps and a brief theoretical argument: the 
average value of a map with F000 included is probably 
in the range 0.7-1.0a, where cr is calculated using all the 
points in the map prepared without F000. The argument 
is: (1) our experience shows that roughly 25% of points 
are negative in an MIR map with the correct value of 
F0t~ included, (2) the density distribution in an initial 
map is fairly close to Gaussian, and (3) for a Gaussian 
distribution of density values, a value of the map mean 
of 0.7a would make density values less than zero account 
for roughly 25% of the points; a mean equal to cr will give 
approximately 15% negative density points. 

The first purpose of the examples is to evaluate the 
agreement between the straight entropy calculation and its 
estimate from the map variance (AS +, 1 2 7or ). The values 
agree to 10% or better for the two experimental maps, 
CPG and 3EST, and are not too much worse for the 
'pseudo-density' XSU map. The agreement is substantially 
worse for the 1BP2 examples. The maps for which the 
variance and entropy agreement is poor have an artificial 
sharpness and lack a bulk solvent model; they fall outside 
the range where the variance approximation is good. Thus 
the approximation is best where it is most likely to be 
useful, namely in real maps, rather than in model maps. 

The second purpose of the examples is to examine the 
effectiveness of the variance approximation to the entropy 
when negative density is included. On the third lines for 
CPG and 3EST, this question has been addressed (maps 
include F000 and negative density). Negative density has 
been included in the variance calculation, and entropy 
has been estimated on this basis. This estimation yields 
a percent optiony value that lies between the percent 
optiony values based on only the positive density for 
the two cases, F000 included or not included ('no F000'). 
This extension of the entropy concept to include negative 
densities thus seems numerically plausible when compared 
against entropy estimates based on truncation of negative 
density. 

The third purpose of the examples is to examine numer- 
ically the entropy decrease with the addition of noise. This 
question is addressed in the 1BP2 examples, where a map 
based on Fc's (from protein coordinates, no bulk solvent 

model) is processed in three different ways to make it pos- 
itive definite. Each of these is taken as a model of a 'per- 
fect' map. Noise is added by recalculating the map with 
the 'perfect' phases, but using artificially generated Fo's 
[the Fo's are the Fc's with noise ( IAFI /F  ~_ 0.08) added 
by the PHONYD program in the XTAL3.0 system (Stewart, 
1990)]. In each case (compare the lines 'xxx' with the im- 
mediately following lines 'Foxxx'), the difference between 
the map entropy and the maximum entropy is greater for 
the 'noisy' maps, as shown in the AS + column of Table 1, 
and as shown by the decreases in the '% optiony' column 
for the noisy map as compared with the 'perfect' map. This 
decrease in entropy is large, although not as large as the 
accompanying change in variance (which falls well out- 
side the range where our variance approximation to the 
entropy is valid). The positivizations ' smsl '  and 'sms2' 
preserve the original map maximum rather than sharpen- 
ing the map as 'med' does; all positivizations preserve 
the mean of the map. [The 'med' map is transformed by 
MEDENS in XTAL3.0 (Collins & Stewart, 1990), with the 
map sharpening parameter, sh at its default value of 1, 
which corresponds to the 'natural' value in the derivation 
by Collins & Prince (1991).] In all cases, as expected, the 
addition of noise decreases entropy. 

The final entries in the table ('Bi-level') are simplified 
two-level maps with the correct proportion of high and low 
densities to have d = 1. They provide some insight into 
the range of validity of the approximation. For example, 
the first line in this group gives values for a map which 
consists, half and half, of density points with values 2 
and 0. The following line shows how these values change 
for a map that has been slightly 'blurred' with density 
values of 1.99 and 0.01. The entropy increases (recall that 
AS + is the difference between maximum possible entropy 
and observed entropy) and the variance decreases. The 
volume of the cell effectively occupied by density slightly 
increases. The variance approximation is slightly better 
for the slightly higher entropy flatter map. The next three 
lines present values for maps with one-quarter high values 
(4, 3.97, 3.01) and three-quarters low values (0.0, 0.01, 
0.33, respectively). Again, the variance approximation is 
best for the lowest variance case. Note the substantial 
influence on total entropy and effective volume occupied 
(% optiony) of spreading low levels of density over the 
'solvent' region ( d r a i n  - -  dm~/9 for line 5 of 'Bi-level'). 
Similar behavior is shown for the case of one-eighth 
high values (8.0, 5.67) and seven-eighths low values (0.0, 
0.33 respectively). On the basis of these examples, it 
appears that the variance approximation to the entropy is 
reasonably good for variances up to 0.5, relative to a map 
normalized to d -  1 (i.e. cr <0.7~.  

Concluding remarks 

First, the effect of noise on entropy illustrated here justifies 
the use of entropy maximization in an intuitively plausible 
way. Second, the relation between entropy and variance 
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appears to be a valid approximation in the region where it 
will be most useful, namely, in maps where atom definition 
is low. Third, the variance approximation extends the 
entropy concept to densities with negative values. 

APPENDIX 

Let a non-negative density be sampled in N places on a 
regular grid, with values di. We divide by D = ~-~i di to 
form the reduced density ri - d i /D .  The reduced density 
sums to 1, and can be interpreted as a probability in the 
sense used for the information entropy 

N 

= - ~ ri In ri. S 
i=1 

Further, rewrite ri in terms of a fractional deviation from 
the mean 

ri = ~(1 + xi), 

where ~ = 1 I N  is the mean reduced density. Thus, by 
definition, - 1  < xi < iv - 1 and )--~i xi = 0. The entropy 
is then 

N 

s = -  + + 

i=1 

= -  ~ Z l n ? -  ~ l n ~ Z x i  

- ~ '~"~ (1 + xi) ln(1 + xi) 

N 

= I n N  - (1/iv) ~ (1 + xi) In(1 + xi).  
i=1 

disappear, and although real density distributions are not 
symmetric, we do not expect significant contributions in 
the region where our approximation is good. 

Our result can be seen formally as a special case of a 
more general result of Jaynes (1979, equation A4) relating 
the decrease of entropy near a constrained maximum to 
the X 2 measure of the difference between that maximum 
point and a nearby point. 

In this approximation, the comparison of two entropies 
with the same mean and the same N is the difference 
between two quadratic sums 

S z - S z  = 1 ' ~ - " ~ ( z ~ - x ~ ) =  1 + 

where ei = zi - xi. By the mean value theorem, the 
difference between the original entropies is 

1 
Sx - Sz = - ~  ~-~(zi - xi)[ln(1 + yi) + 1] 

1 
= ~  Z ei ln(1 + Yi), 

where yi lies strictly between xi and zi and the term 
)--~(zi - xi) disappears in the sum. If lezl << (z~ + x~)/2, 
then Yi -~ (zi + x i ) /2  = #i and an expansion of the 
logarithm gives Sx - S z  as its leading term when [Yi[ << 1. 

Both of these expressions show clearly how si must 
be correlated with #i in order to make Sx > Sz: to get 
positive terms in the sum, when the mean (or yi) is < 0, 
x~ must on the average be > z~ to make ~ < 0, or when 
the mean is > 0, xi must on the average be < zi. In both 
cases, xi is closer to zero than zi (the corresponding di 
is closer to ~ and the density is flatter, on the average, 
point by point. See Collins & Prince (1991) for another 
derivation. 

With the assumption Ixi[ < 1, we may expand the loga- 
rithm, and drop the first-order ~ xi which is zero, to get 

N 

= l n N  - ( l / N )  ~-~(x~12 - x'~16 + x~l12 + . . . ) .  
i=l 

The leading term is exactly half the variance about the 
mean ?, when expressed in the dimensionless variable zi. 
[Note that zi  = (di - d)/d; a density normalized in this 
way would sum to N.] Hence to lowest order, 

1 2 1 
= In N - ~cr = In iV - ~--~variation, 

where the variance or variation would be computed with 
the density normalized to d = 1. [Variation is used in 
the sense of Fisher (1960): the sum over all points of the 
squared difference from the mean, and is equal to N times 
the square of the standard deviation for an iV point map.] 
For a symmetric distribution, the cubic term would also 

References 

COLLINS, D. M. & PRINCE, E. (1991). Exponential Density: Exact Fitting 
of Structure Moduli by Entropy Maximization. In Crystallographic 
Computing 5: From Chemistry to Biology, edited by D. MORAS, A. 
D. PODIARNY & J. C. THIERRY, pp. 308-316. Oxford Univ. Press. 

COLLINS, D. M. & STEWART, J. M. (1990). MEDENS. In XTAL3.0 Refer- 
ence Manual, edited by S. R. HALL & J. M. STEWART, pp. 149-151. 
Univs. of Western Australia, Australia, and Maryland, USA. 

DUKSTRA, B. W., KALK, K. H., HOL, W. G. J. & DREr¢I~, J. (1981). J. 
Mol. Biol. 147, 97-123. 

FISaER, R. A. (1960). The Design of Experiments, 8th ed., pp. 52-58. 
Edinburgh: Oliver and Boyd. 

JAYNES, E. T. (1978). Where Do We Stand on Maximum Entropy? In 
Papers on Probability, Statistics, and Statistical Physics, edited by R. 
D. ROSENKP, AtCrz, pp. 211-314. Dordrecht: Reidel. 

JAYNES, E. T. (1979). Concentration of Distributions at Entropy Maxima. 
In Papers on Probability, Statistics, and Statistical Physics, edited by 
R. D. ROSENKRAtCrZ, pp. 317-336. Dordrecht: Reidel. 

MEYER, E., COLE, G., RAD.AKRISHNAN, R. & EPP, O. (1988). Acta Cryst. 
B44, 26-38. 

STEWART, J. M. (1990). PHONYD. In XTAL3.0 Reference Manual, edited 
by S. R. HALL & J. M. STEWART, pp. 209-210. Univs. of Western 
Australia, Australia, and Maryland, USA. 

SWANSON, R. M. (1990). J. Chem. Educ. 67, 206-208. 


